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Abstract The classical Haar construction of Brownian motion uses a binary tree of trian-
gular wedge-shaped functions. This basis has compactness properties which make it espe-
cially suited for certain classes of numerical algorithms. We present a similar basis for the
Ornstein-Uhlenbeck process, in which the basis elements approach asymptotically the Haar
functions as the index increases, and preserve the following properties of the Haar basis:
all basis elements have compact support on an open interval with dyadic rational endpoints;
these intervals are nested and become smaller for larger indices of the basis element, and for
any dyadic rational, only a finite number of basis elements is nonzero at that number. Thus
the expansion in our basis, when evaluated at a dyadic rational, terminates in a finite num-
ber of steps. We prove the covariance formulae for our expansion and discuss its statistical
interpretation.

Keywords Ornstein-Uhlenbeck process · Brownian motion · Haar basis

1 Introduction

Random walks and continuous stochastic processes are of fundamental importance in a num-
ber of applied areas, including optics [1], chemical physics [2], biophysics [3, 4], biology [5]
and finance [6]. The mathematical idealization of the one-dimensional continuous random
walk, the Wiener process, can be expressed in—infinitely—many bases as a sum of random
coefficients times basis elements. Unique among these bases, the Haar—or Schauder—basis
has three properties that make it particularly suitable for certain numerical computations.
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First, the basis elements all have compact support: the basis elements are nonzero only in
open intervals. Second, the support is increasingly compact, i.e., the open intervals become
smaller for higher indices of the basis elements; in fact, the intervals are nested in binary
tree fashion, and have dyadic rational endpoints. Finally, given any dyadic rational, there
is a finite number of basis elements which are nonzero at that number, so that evaluation
of the Haar expansion at a dyadic rational terminates in a finite number of steps known
beforehand. These properties can be used to great advantage in algorithms that construct
the random walk in a “top-down” fashion, such as dychotomic search algorithms for first
passage times.

However, the “plain” Wiener process has limited applicability in the areas mentioned
above, so an extension of this construction to more complex stochastic processes is desir-
able. The naive generalization of the Haar basis construction to other stochastic processes
fails to display our three properties. We present a method for constructing a Haar-like basis
for the Ornstein-Uhlenbeck process which preserves these properties. The basis is therefore
useful for advanced numerical computations: a fast dichotomic search algorithm for first
passage time computations shall be presented elsewhere. The method we present is also
amenable to further generalizations to other stochastic processes. We should emphasize that
the advantages granted by use of this basis or its generalizations come at the price of gen-
erality: numerical integration of stochastic differential equations works for any stochastic
differential equations, in particular many nonlinear vector fields of fundamental importance
in physics and chemistry. Numerical methods tied to our basis construction work only for
the specific stochastic process for which the basis is known; in the case presented here, only
the Ornstein-Uhlenbeck process.

This paper is organized as follows. We first review some background in stochastic
processes and basis expansions. Then we review the well-known Lévy construction of a
Wiener process with the help of a basis of functions derived from the Haar system. In the
third section, we give a statistical interpretation of such a construction, which leads us to
propose a basis for the Ornstein-Uhlenbeck process. In the fourth section, we prove that the
Ornstein-Uhlenbeck process is correctly represented as a discrete process in the proposed
basis. In the last section, we extend the principle of the construction to build a bi-infinite
representation.

2 Background on Stochastic Processes

2.1 General Definition for Stochastic Processes

The Wiener process and the Ornstein-Uhlenbeck process are continuous stochastic pro-
cesses; we specify this class of process through the Langevin equation{

ẋ = f (x, t) + η(t),

x(t0) = x0, t ∈ [t0, T ], (1)

where f is a deterministic function and η(t) describes the stochastic forcing. Equation (1) is
a first order stochastic differential equation and its connection to the Fokker-Planck equation
has been extensively studied [1, 2]. We only consider here the case where the noise is white
and Gaussian: η(t) are realizations of independent identically distributed Gaussian variables
ηt , with time correlations satisfying

〈ηt · ηs〉 = Γ · δ(s − t),
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where δ is the Dirac distribution.
We denote by ω a given realization of the stochastic forcing: the collection of all the

values {η(t)}t∈[t0,T ] in an interval. The set of ω values defines the sample space Ω and
occurrence of a sequence ω in Ω is determined by the joint probability density of {ηt }t∈[t0,T ].
With this notation, we can introduce the solution of the stochastic system as the stochastic
process X. For a given realization of the noise ω, there is a unique solution to (1) called a
sample path: neglecting to notate the dependence on the initial condition, we write Xt(ω) the
value of this sample path at time t . The value Xt(ω) can be seen as the outcome of a random
variable Xt defined on Ω . If X is the collection of random variable Xt for t in [t0, T ], we say
that X is the stochastic process solution of (1). Moreover, the process X has two important
properties: it is a continuous process as it is defined for a continuous index set [t0, T ]; and,
being a Markovian process, the value of Xt only depends on {η(u)}u∈[0,t], the sequence of
realizations preceding t .

2.2 The Wiener Process and the Ornstein-Uhlenbeck Process

Two special forms of f shall concern us. When f is zero, the stochastic process solution
of (1) is called the Wiener process W ; when f is linear in x, the process is called the
Ornstein-Uhlenbeck process U . These processes exhibit two interesting properties: first they
are both Gaussian processes; second they both have continuous sample paths. Moreover, due
to the relative simplicity of both situations, the probability laws of the processes (i.e., the
Green functions of the associated Fokker-Planck equations) are known analytically. If a
Wiener process is at x0 at time t = t0, the probability of finding the process between x and
x + dx at time t is

P(Wt ∈ dx|Wt0 = x0) = 1√
2π · Wσt

· exp

(
− (x − x0)

2

2 · Wσ 2
t

)
dx (2)

with a variance Wσ 2
t = Γ · (t − t0). For the Ornstein-Uhlenbeck process where the function

f is defined as f (x) = −αx, a similar result holds

P(Ut ∈ dx|Ut0 = x0) = 1√
2π · Uσt

· exp

(
− (x − x0e

−α(t−t0))2

2 · Uσ 2
t

)
dx (3)

with a variance Uσ 2
t = Γ

2α
· (1 − e−α(t−t0)). The previous expressions describe the statistics

of W and U , which will be called X when collectively designated.

2.3 Discrete Representation of Continuous Process

Continuous processes require an non-countable number of random variables, and estab-
lishing results about them is quite difficult. Consider for example the Ornstein-Uhlenbeck
process, widely used from finance to neuroscience: finding analytically the first-passage
times distribution with a fixed threshold proves a surprisingly intricate question [7–9]: only
three representations of analytical nature have been derived in this situation, ranging from an
expansion in terms of eigenfunctions, to an integral representation in terms of special func-
tions through a functional of the three-dimensional Brownian bridge. These representations
give rise to efficient numerical methods [10] but for a general form of threshold, sample
paths are only approximated by stochastic Euler methods, or Runge-Kutta-like higher-order
methods, with integration schema of low efficiency [11–13].
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The mathematical difficulties in numerical integration of Langevin equations come from
two roots. First, the stochastic term in the stochastic differential equations is O(

√
Δt) when

integrating with a timestep Δt . Higher-order methods whose schema would yield O(Δtα)

for an ordinary differential equation yield at the most O(Δtα/2) in a stochastic differential
equation, and they have to be carefully constructed and evaluated [14–16]. Second, even this
slower convergence should not be taken for granted: the Runge-Kutta integration schema
assumes that the solution can be expanded in Taylor series in Δt , which is manifestly not
the case for the solution of a stochastic differential equation. The correctness of the term-
by-term expansion in Δt may be misleading: as the expansion itself is not a convergent
series, equality of the expansion coefficients is not a strong guarantee, and some methods
have been derived to sidestep integration order [17, 18]. These problems become manifest
rather sporadically, and in general, numerical integration of stochastic differential equations
is a phenomenally useful tool. However, at the purely practical level it is well-known that
such integration is numerically costly.

To circumvent the problem, it is advantageous to represent a continuous process as a dis-
crete process. Conspicuously enough, a discrete process has a countable index set of random
variables. At stake is to write a Gaussian process X as a convergent series of random func-
tions fn · ξn, where fn is a deterministic function and ξn a Gaussian variable of law N (0,1)

(i.e. with null mean and unitary variance). Assuming the coefficients of the decomposition
to be included in the definition of fn, the identity

Xt =
∞∑

n=0

fn(t) · ξn = lim
N→∞

N∑
n=0

fn(t) · ξn

shows Xt as the limit of a sequence of finite processes
∑N

n=0 fn(t) · ξn. Depending on the
nature of the convergence, this may result in two advantages. Analytically, it can be more
tractable to prove mathematical results about continuous random processes by considering
their discrete representation: it is noticeable when computing quantities such as the charac-
teristic functional of random processes [19]. Numerically, the quantity

∑N

n=0 fn(t) · ξn can
be accurately computed: it provides us with an exact schema to simulate sample paths values
at the points where the functions fn becomes zero if n is large enough.

3 The Discrete Representation of the Wiener Process

3.1 The Haar-like Construction

In view of constructing a discrete representation of the Wiener process, we first introduce
the Schauder functions [20, 21]. They are derived from the Haar system, which is the set of
functions hn,k in L2([0,1]) defined as

hn,k(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
n−1

2 if (2k)2−n ≤ t < (2k + 1)2−n,

−2
n−1

2 if (2k + 1)2−n ≤ t < 2(k + 1)2−n,

0 otherwise

for n≥1 with the addition of the function h0,0(t) = 1 on [0,1]. The Haar system has sev-
eral interesting properties. First, the functions hn,k form a complete orthonormal basis of
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L2([0,1]) for the scalar product (f, g) = ∫ 1
0 f (t)g(t)dt . Second, each element hn,k has a

compact support

Sn,k = [k · 2−n+1, (k + 1)2−n+1]
and, for a given n, the collection of supports Sn,k represents a partition of [0,1] up to the
endpoints. Third, the functions hn,k build up a wavelet basis of L2([0,1]), since we have the
scale-invariant construction rule

hn,k(t) = 2
n−1

2 · h1,0(2
n−1t − k). (4)

Such properties prove useful to decompose simple Gaussian processes as related in the fol-
lowing. The Schauder functions are defined as the indefinite integrals of the Haar functions
hn,k and we denote them as

Ψn,k(t) = √
Γ ·

∫ 1

0
χ[0,t](u)hn,k(u)du, (5)

with the help of the indicator functions given by

χ[0,t](u) =
{

1 if 0 ≤ u ≤ t ,

0 otherwise.

For a fixed n > 0, the functions Ψn,k are little tents of heights
√

Γ · 2− n+1
2 with non-

overlapping support Sn,k for different values of k. The first elements of the so-defined basis
are shown on Fig. 1.

We can now proceed to the actual discrete construction of the Wiener process. For N ≥ 0,
we use the Schauder functions to form the process WN

t defined on Ω as the finite sum

WN
t =

N∑
n=0

∑
0≤k<2n−1

Ψn,k(t) · ξn,k,

where ξn,k are independent random variables of normal law N (0,1) on Ω . It is worth notic-
ing that for every ω in Ω , the sample path t 
→ WN

t (ω) belongs to the set of continuous

functions on [0,1] denoted C([0,1]). Indeed, observing that
√

Γ · 2− n+1
2 is an upper bound

of the Schauder functions Ψn,k , it can be shown [20, 21] that, for almost every ω in Ω , the
sample path t 
→ WN

t (ω) converges normally and uniformly in t to a function t 
→ Wt(ω)

when N goes to infinity. As every sample paths is continuous, the limit function t 
→ Wt(ω)

results to be in C([0,1]). This allows to define on Ω a limit process W = limN→∞ WN with
continuous paths.

If W proves to be a Wiener process, we will have a valid discrete representation of the
Wiener process. Being defined as the limit of Gaussian processes WN , we know that W

is also a Gaussian process. Therefore, showing that W is a Wiener process only amounts
to demonstrate that it has the same law of covariance as a Wiener process [20, 21], i.e.
〈Wt ·Ws〉 = Γ · min(t, s), where min(t, s) is the minimum of t and s. The calculation of the
covariance of the limit process W is the central point to validate the discrete representation
of the Wiener process and needs to be carefully detailed.
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Fig. 1 In the left column, the
elements of the basis Ψn,k are
represented for each rank n with
0 ≤ n < 6. In the right column,
the partial sums Wn(ω) are
shown for a given set of
realizations ω. Note that each
element Ψn,k has a compact
support delimited by dyadic
numbers in
Dn = {k2−n|0 ≤ k ≤ 2n} and
that all Ψn′,k is zero on Dn for
n′ > n

3.2 Covariance Calculus

According to the preceding discussion, we need to evaluate the quantity

〈Wt · Ws〉 = lim
N→∞

〈WN
t · WN

s 〉 = lim
N→∞

N∑
n=0

∑
0≤k<2n−1

Ψn,k(t)Ψn,k(s)

which entails the calculation of a rather tedious series. Indeed, for a given t , at each step n,
there is only one k for which Ψn,k(t) is nonzero, and expressing the series analytically results
in a complicated operation. One way to overcome the issue is to notice that the expected
covariance result can be expressed in terms of

min(t, s) =
∫ 1

0
χ[0,t](u)χ[0,s](u)du. (6)

The right term of (6) is actually the scalar product of the functions χ[0,t] and χ[0,s] in the
Hilbert space L2([0,1]). As the Haar functions form a Hilbert basis of L2([0,1]), we can
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use the Parseval theorem to write the scalar product of two given functions as

∫ 1

0
f (t)g(t)dt =

∑
n≥0

0≤k<2n−1

∫ 1

0
f (u)hn,k(u)du

∫ 1

0
g(u)hn,k(u)du. (7)

When applied to the indicator functions of interest χ[0,t] and χ[0,s], the relation (7) leads to

Γ · min(t, s) = Γ ·
∫ 1

0
χ[0,t](u)χ[0,s](u)du

=
∞∑

n=0

∑
0≤k<2n−1

Ψn,k(t)Ψn,k(s),

since the definition (5) describes Ψn,k(t) as the coefficient relative to hn,k in the decomposi-
tion of χ[0,t] on the Haar system. We can finally recap the result

〈Wt · Ws〉 = lim
N→∞

〈WN
t · WN

s 〉

= lim
N→∞

N∑
n=0

∑
0≤k<2n−1

Ψn,k(t)Ψn,k(s) = Γ · min(t, s),

establishing the discrete description of the Wiener process as a normally convergent series
of terms Ψn,k · ξn,k , where Ψn,k is a Haar-derived function and ξn,k a random variable of
normal law N (0,1).

4 The Rationale of the Construction for the Ornstein-Uhlenbeck Process

4.1 Comparison of the Wiener Process and the Ornstein-Uhlenbeck Process

We recall that the Langevin equation (1) can be solved by quadratures in simple cases. In
the framework of stochastic integration, we are provided with rigorous integral expressions
for these solutions. If the process is at x0 when t = 0, the Ornstein-Uhlenbeck process Ut is
expressed

Ut = x0e
−αt +

∫ t

0
eα(u−t)dWu, (8)

as opposed to the Wiener process Wt in the same conditions

Wt = x0 +
∫ t

0
dWu. (9)

The comparison of definitions (8) and (9) explains why finding a basis of decomposition
for U is a difficult task. Indeed, the process U is not anymore a simple integral of “white
Gaussian noise elements” dWu: the exponential factor in (8) indicates that the contribution
of the dWu in the integral expression of U depends on the position of u compared to t . It is
also apparent that, due to the exponential modulation, the Ornstein-Uhlenbeck process does
not exhibit scale-invariant properties. As a consequence, it is unlikely for the putative basis
of decomposition to be build from an orthogonal wavelet basis.
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Fig. 2 A sample path
t 
→ Ut (ω) is represented at
different magnifications
following the scale invariance of
a Wiener process: the vertical
zooming factor is the square root
of the horizontal factor. Note that
the sample path t 
→ Ut (ω)

behaves as a Wiener process at
small scales

Yet, as noticeable in Fig. 2, the examination of a sample path t 
→ Ut(ω) reveals the
scale-invariant behavior of a Wiener process for asymptotically small time scale as well as
for asymptotically small α. It means that the basis of decomposition Ψn,k for the Wiener
process is asymptotically valid to describe Ut at fine scale. This observation suggests that,
upon slight alteration of its analytical expression, the Haar derived basis Ψn,k can give rise to
a basis Φn,k adapted to the Ornstein-Uhlenbeck process. The change in the analytical expres-
sion of Ψn,k should be consistent with the previously mentioned difficulties, preventing its
formulation to be scale invariant or orthogonal. Under this restraint, the fundamental prop-
erty that each element Ψn,k exhibits a compact support of the form Sn,k should be preserved
in the expression of Φn,k .

4.2 The Markov Property of the Wiener Process and the Ornstein-Uhlenbeck Process

To carry out this program, the key point is to consider p(Xty = y|Xtx = x,Xtz = z) with
tx < ty < tz, the probability density of Xty knowing its values x and z at two framing times
tx and tz. Because X is a Markovian process, a sample path t 
→ Xt(ω) which originates from
x and joins z through y is just the junction of two independent paths: a path originating in x

going to y and a path originating from y going to z. Assuming conditional knowledge of its
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origin x, the probability of such a compound path is the product of the probability of the two
elementary paths with conditional knowledge of their respective origins x and y. Therefore,
after normalization by the absolute probability for a path to go from x to y, the probability
density p(Xty = y|Xtx = x,Xtz = z) is expressed in the following expression

p(Xty = y|Xtx = x,Xtz = z) = p(Xty = y|Xtx = x) · p(Xtz = z|Xty = y)

p(Xtz = z|Xtx = x)
. (10)

It is now a simple matter of calculation to compute the density of Xty knowing Xtx = x

and Xtz = z with the analytical expression of the probability p(Xty = y|Xtx = x). In the
case of a Gaussian process, it is expected to follow a normal law, which we refer to as
N (Xμ(ty), Xσ (ty)). For the Wiener process, using expression (2) for p(Xty = y|Xtx = x),
the mean value Wμ(ty) and the variance Wσ 2(ty) result in

Wμ(ty) = Wμtx ,tz (ty, x, z) = tz − ty

tz − tx
· x + ty − tx

tz − tx
· z, (11)

Wσ 2(ty) = Wσ 2
tx ,tz

(ty) = Γ · (ty − tx)(tz − ty)

tz − tx
. (12)

For the Ornstein-Uhlenbeck process, using expression (3) for P(Xty = y|Xtx = x) similarly
yields the mean Uμ(ty) and the variance Uσ (ty)

2 as shown in supplementary materials:

Uμ(ty) = Uμtx ,tz (ty, x, z) = sinh (α(tz − ty))

sinh (α(tz − tx))
· x + sinh (α(ty − tx))

sinh (α(tz − tx))
· z, (13)

Uσ 2(ty) = Uσ 2
tx ,tz

(ty) = Γ

2α
· 2 · sinh (α(ty − tx)) · sinh (α(tz − ty))

sinh (α(tz − tx))
. (14)

In the limit of very short time scale or vanishing α, we notice that Uμ(ty) and Uσ 2(ty)

approximate Wμ(ty) and Wσ 2(ty).

4.3 The Conditional Averages of the Processes on Dyadic Ensembles

We note DN the set of reals {k2−N | 0 ≤ k ≤ 2N } and we have {0,1} = D0 ⊂ D1 ⊂ · · · ⊂ DN

a growing sequence of sets with limit ensemble D the set of dyadic points in [0,1]. Let us
consider 〈Xt 〉DN

the conditional expectation of the random variable Xt given {Xt }t∈DN
. The

collection of random variables 〈Xt 〉DN
defined on Ω specify a continuous stochastic process

〈X〉DN
on Ω . For a Wiener process, (11) shows that a sample path t 
→ 〈Wt 〉DN

(ω) is a
piece-wise linear function of t interpolating each points of DN ; whereas for an Ornstein-
Uhlenbeck process, (13) depicts a sample path t 
→ 〈Ut 〉DN

as a succession of catenaries
joining successive points of DN . With 0 ≤ k < 2−N , if tx = k2−N and tz = (k + 1)2−N are
the two successive points of DN framing t , the average 〈Xt 〉DN

is only conditioned by the
random variables Xtx and Xtz . For the sake of simplicity, we write for a given realization ω

in Ω

〈Xt 〉DN
(ω) = 〈Xt 〉x,z = Xμtx ,tz (t, x, z)

def= XμN(t), (15)

where the conditional dependency upon the outcomes Xtx = x and Xtz = z is implicit
in XμN .

We want to investigate the change in the estimation of Xt due to the conditional knowl-
edge of its value on the dyadic set DN+1. In that perspective, we exemplified the conditional
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expectation 〈Xt 〉DN+1
on [tx, tz] where the estimation of Xt is now dependent upon the out-

come of Xty with ty the midpoint of tx and tz: for every ω in Ω , we write

〈Xt 〉DN+1
(ω) = 〈Xt 〉x,y,z =

{〈Xt 〉x,y if tx ≤ t ≤ ty,

〈Xt 〉y,z if ty ≤ t ≤ tz

def= XνN(t, y), (16)

where we underline the dependency on y, due to the additional conditioning on DN+1 \DN .
Now, let us assume that we only have conditional knowledge of the process on DN . By

the Markov property, the value y in (16) is the outcome of Xty given Xtx and Xtz , whose
statistics is described by the law N (Xμ(ty), Xσ (ty)). We use the short notation YN,k to desig-
nate a Gaussian variable following such a law. Remembering that we only have knowledge
of the process on DN , we remark that the conditional law of 〈Xt 〉DN+1

is the same as the law
of the random variable XνN(t, YN,k). It represents, through the function XνN , the random
contribution of ignoring Xty = y when one estimates the process knowing its values on tx
and tz.

4.4 Identification of the Conditional Averages with the Partial Sums

The results above allows to gain insight in the building of a Wiener process W as the con-
verging series of random functions Ψn,k · ξn,k . It is easy to see from the definition (4) that
Ψn,k is linear between any two points in Dn for n ≤ N and that Ψn,k is zero on Dn for every
n > N . In other words, the partial sum

WN
t =

N∑
n=0

∑
0≤k<2n−1

Ψn,k(t) · ξn,k for t ∈ DN

coincide with Wt on DN and more generally with 〈Xt 〉DN
on [0,1]. Identifying partial sums

with conditional averages, it is then straightforward to express for every ω in Ω the compo-
nent ΨN+1,k(t) · ξN+1,k in the decomposition of Wt

ΨN+1,k(t) · ξN+1,k(ω) = WN+1
t (ω) − WN

t (ω)

= 〈Wt 〉DN+1
(ω) − 〈Wt 〉DN

(ω)

= WνN(t, y) − WμN(t). (17)

We bear in mind the previous definitions for which [tx, tz] = [k2−N, (k + 1)2−N ] is the
support SN+1,k of ΨN+1,k and y is the outcome of Xty with ty the midpoint of tx and tz. If we
only assume conditional knowledge on DN , WνN(t, y) − WμN(t) is distributed according to
the same law as of the law of the random variable WνN(t, YN,k) − WμN(t). We deduce that,
conditionally to the values on DN , ΨN+1,k(t) · ξN+1,k has the same law as WνN(t, YN,k) −
WμN(t).

The tight connection between ξN+1,k and YN,k is made obvious: if one knows the values of
the process on DN , the random contribution of

∑
k ΨN+1,k(t) ·ξN+1,k conveys the uncertainty

about Wt that is discarded by the knowledge of its values on DN+1 \ DN . In this regard, we
stress the fact that the conditional law of ξN+1,k knowing the values of the ξn,k for n ≤ N is
again N (0,1) by independence of the ξn,k .
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We are now in a position to complete our program by continuing the identification of
partial sums and conditional average for the Ornstein-Uhlenbeck process U . As a basis
of decomposition, we propose the set of functions Φn,k defined on Sn,k with n ≥ 0 and
0 < k ≤ 2n−1 by the following criteria: for a given N , the function ΦN+1,k is the continuous
positive function on SN+1,k such that the random variable ΦN+1,k(t) ·ξN+1,k has the same law
as the law of UνN(t, YN,k) − UμN(t). The previous criteria assumes the adapted definitions
of UμN and UνN on SN+1,k , the support of the investigated functions ΦN+1,k . We underline
that the notation YN,k refers here to the random variable Ut at the midpoint of the support
t = (2k + 1)2−(N+1) knowing its values on the extremities.

5 A Discrete Construction for the Ornstein-Uhlenbeck Process

5.1 The Candidate Basis for a Discrete Representation

In view of representing an Ornstein-Uhlenbeck process as a discrete process, the comparison
with a Wiener process suggests a candidate basis of decomposition of the form Φn,k · ξn,k ,
the variable ξn,k following the law N (0,1). The deterministic function Φn,k is defined with
support Sn,k = [k ·2−n+1, (k +1)2−n+1] for n > 0 with 0 ≤ 2k < 2n. We use expressions (13)
and (14) to make explicit the formulation of Φn,k and we obtain

Φn,k(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
Γ ·sinh (|α|(t−2k·2−n))√

α·sinh (α2−n+1)
if (2k)2−n ≤ t < (2k + 1)2−n,

√
Γ ·sinh (|α|(2(k+1)2−n−t))√

α·sinh (α2−n+1)
if (2k + 1)2−n ≤ t < 2(k + 1)2−n,

0 otherwise.

(18)

Without any further comment, the element Φ0,0 is defined as

Φ0,0(t) =
√

Γ · e− α
2 sinh (|α|t)√

α · sinhα
, (19)

a choice we will explain in Sect. 6.1. The first elements Φn,k are shown in Fig. 3. As ex-
pected, they are only asymptotically scale-invariant but they exhibit the desirable property
of being compactly supported on Sn,k , the interval between two dyadic points k · 2−n+1 and
(k + 1)2−n+1.

To validate the decomposition of an Ornstein-Uhlenbeck process Ut on the set of func-
tions Φn,k , we need to study the convergence of the partial sums

UN
t =

N∑
n=0

∑
0≤k<2n−1

Φn,k(t) · ξn,k.

As each function Φn,k is dominated by
√

Γ · e|α|2− n+1
2 , the same argument as for the Wiener

process entails the normal and uniform convergence in t of the sample path t 
→ UN
t (ω)

almost surely on the sample space Ω . We then denote U the limit process defined almost
surely on Ω as U = limN→∞ UN

t . The normal convergence causes U to have continuous
paths; being a sum of Gaussian variables, it is also a Gaussian process. Therefore, proving
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Fig. 3 In the left column, the
elements of the basis Φn,k are
represented for each rank n with
0 ≤ n < 6. In the right column,
the conditional
Ornstein-Uhlenbeck process
〈Ut 〉Dn

is shown for a given set
of realizations on Dn . Once
more, note that each
element Ψn,k has a compact
support delimited by dyadic
numbers in
Dn = {k2−n | 0 ≤ k ≤ 2n} and
that all Φn′,k is zero on Dn for
n′ > n

that U is an Ornstein-Uhlenbeck process just requires us to show that the covariance of U

satisfies

〈Ut · Us〉 = Γ

2α
· e−α(t+s)(e2α min(t,s) − 1). (20)

To establish this relation, we need to evaluate the covariance of U as the limit covariance of
the partial sums

〈UN
t · UN

s 〉 =
N∑

n=0

∑
0≤k<2n−1

Φn,k(t)Φn,k(s).

5.2 Covariance Calculus

It is possible to simplify the above expression, even though the functions Φn,k are not or-
thogonal. For each given n, the disjoint supports of Φn,k form a partition of [0,1] as a
collection of segments Sn,k of equal length 2−n+1. Considering a real t in [0,1], there is only
one sequence of indices kn such that t belongs to each support of Sn,kn . The succession of
kn represents t as the intersection of decreasing dyadic segments

⋂∞
n=0 Sn,kn , which can be
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explained in terms of the binary representation t = ∑∞
1 ai2−i , ai ∈ {0,1}, if we exclude in-

appropriate infinite developments. Bearing in mind the system of indexing for Sn,k , a simple
recurrence argument leads to the expression of kn corresponding to a given t in its binary
representation

kn = 1

2
·

n−1∑
i=1

ai2
n−i . (21)

We are now in a position to write the reduced expression of the partial sums

UN
t =

N∑
n=0

Φn,kn(t) · ξn,kn

where the terms Φkn,n(t) is made explicit using the previous formulation of kn in the defini-
tion (18)

Φn,kn(t) =

⎧⎪⎨
⎪⎩

√
Γ ·sinh (|α|∑∞

n+1 ai2−i )√
α·sinh (α2−n+1)

if an = 0,

√
Γ ·sinh (|α|∑∞

n+1(1−ai )2
−i )√

α·sinh (α2−n+1)
if an = 1.

Informed by these preliminaries, we shall carry out the calculation of the covariance. The
reduced formulation of partial sums allows us to write

〈UN
t · UN

s 〉 =
N∑

n=1

Φn,kn(t)Φn,ln (s) + Φ0,0(t)Φ0,0(s) (22)

where the indices kn and ln designate the sequence of functions Φn,kn and Φn,ln whose
supports contain t and s respectively. When t and s are distinct, we notice that for
n > 1 − log2 |t − s|, the supports Skn,n and Sln,n containing t and s respectively are disjoint,
so that the cross-products Φkn,n(t)Φln,n(s) cancel out if n is large enough. It is then possible
to write expression (22) as a finite sum where the terms Φkn,n(t) and Φln,n(s) are specified
due to the binary representations t = ∑∞

1 ai2−i and s = ∑∞
1 bi2−i . We specify that we only

consider proper binary representations, that is, the binary representation of dyadic points is
chosen in its finite form. For the sake of simplicity, we assume that t < s. Formulated in
the binary representation, the order t < s is equivalent to the existence of a natural N0 > 0
such that an = bn as long as n < N0 and aN0 < bN0 , that is aN0 = 0 and bN0 = 1. With the
preceding remarks, it is clear that Skn,n and Sln,n are disjoint for n > N0 and we can write
the covariance of UN

t for N > N0 in the explicit form

〈UN
t · UN

s 〉
N>N0

= Γ

2α

(
N0∑
n=1

2 · un

sinh (α2−n+1)
+ e−α 2 sinh (αt) sinh (αs)

sinhα

)
. (23)

The variable un apparent in (23) represents for n < N0 the numerator of the cross-products
Φkn,n(t)Φln,n(s) when the extension an and bn coincide

un =
{

sinh (α
∑∞

n+1 ai2−i ) sinh (α
∑∞

n+1 bi2−i ) if an = bn = 0,

sinh (α
∑∞

n+1(1 − ai)2−i ) sinh (α
∑∞

n+1(1 − bi)2−i ) if an = bn = 1.
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As for the limit case n = N0, uN0 expresses the numerator of the cross-product
ΦkN0 ,N0(t)ΦlN0 ,N0(s) with aN0 = 0 and bN0 = 1

uN0 = sinh

(
α

∞∑
N0+1

ai2
−i

)
sinh

(
α

∞∑
N0+1

(1 − bi)2
−i

)
.

At that point, the explicit form of the covariance (23) results in a rather complicated com-
bination of hyperbolic functions. Fortunately enough, we can resort to using remarkable
identities to simplify its expression. The solution actually lies in the consideration of the
quantity

vn = sinh

(
α

∞∑
n

ai2
−i

)
sinh

(
α

∞∑
n

(1 − bi)2
−i

)
. (24)

We show in the supplementary materials that, as long as n < N0, vn verifies the recurrence
relation

vn = 2 cosh(α2−n) · vn+1 + un. (25)

We can express un in terms of vn and vn+1 to compute the following series by cancellation
term by term

N0−1∑
n=1

un

sinh (α2−n+1)
= v1

sinhα
− vN0

sinh (α2−N0+1)
. (26)

Remembering that aN0 = 0 and bN0 = 1, we remark that vN0 = vN0+1 = uN0 so that the
insertion of (26) in expression (23) caused the remaining terms in uN0 to cancel out. It is
then straightforward to write the covariance

〈UN
t · UN

s 〉
N>N0

= Γ

2α

(
2 · v1

sinhα
+ e−α 2 sinh (αt) sinh (αs)

sinhα

)
. (27)

We observed that the definition of v1 invokes the full binary representations of t and s so
that we have v1 = sinh (αt) sinh (α(1 − s)). After a several manipulations, expression (27)
finally yields

〈UN
t · UN

s 〉
N>N0

= Γ

2α
· e−α(t+s)(e2αt − 1),

which is the expected result for the covariance of an Ornstein-Uhlenbeck process (20) given
that t = min(t, s) as t < s.

Regarding the calculation of the variance when t = s, the series of cross-products
Φkn,n(t)Φln,n(s) = Φ2

kn,n(t) becomes infinite, but fortunately the recurrence relation (25)
is then valid for every n > 0. As the quantity vn vanishes when n grows to infinity, the can-
cellation term by term is still effective to compute the series in (23). It leads to the expected
variance expression for an Ornstein-Uhlenbeck process Uσ 2

t = Γ
2α

· (1 − e−αt ).
We finally recap the result for any t and s without assuming any order

〈Ut · Us〉 = lim
N→∞

〈UN
t · UN

s 〉 = Γ

2α
· e−α(t+s)(e2α min(t,s) − 1).

It proves the discrete description of an Ornstein-Uhlenbeck processes as the normally con-
vergent series of random functions Φn,k · ξn,k , where Φn,k is a deterministic function defined
in (5) and ξn,k a random variable of normal law N (0,1).
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6 Bi-infinite Representation on the Set of Positive Reals

6.1 The Choice of the Basis Function

Whether standing for a Wiener process or an Ornstein-Uhlenbeck process, X can be decom-
posed in a discrete basis of functions fn,k , where fn,k is a generic notation for the determin-
istic functions Ψn,k and Φn,k . The identification of the partial sums

XN
t =

n=N∑
n=0

∑
0≤k<2n−1

fn,k(t) · ξn,k

with the conditional average 〈Xt 〉DN
suggests to consider the discrete representation of X

as a recurrence construction, a view that explains how to chose the first element of the
basis f0,0.

First, we formulate the inductive step of the recurrence argument. Suppose we know at
rank N that XN

t and 〈Xt 〉DN
have the same probability distribution on Ω , we want to show

that XN+1
t and 〈Xt 〉DN+1 follows the same probability. Let us assume prior knowledge of

Xt on DN . If we consider a given time t , there exists a unique k such that k2−N ≤ t <

(k + 1)2−N and we know that the collection of segments SN+1,k = [k2−N, (k + 1)2−N ] for
0 ≤ k < 2N defines a partition of [0,1] up to the endpoints. We also remark that tN+1,k =
(2k + 1)2−(N+1) is the only point of DN+1 \ DN in SN+1,k . According to the results exposed
in the second section, we know that the outcome of XtN+1,k

given XtN,k
and XtN,k+1 follows

the same law as

Xσ (tN+1,k) · ξN+1,k + Xμ(tN+1,k)

where ξN+1,k is of normal law N (0,1). As X is a Markov process, the outcome of
〈Xt 〉DN+1

− 〈Xt 〉DN
only depends on the outcome of XtN+1,k

given XtN,k
and XtN,k+1 when

restricted on the support Sn+1,k . Due to the simplicity of the situation, it is possible to
find on SN+1,k an analytical expression of the form fN+1,k · ξn,k to describe the probabil-
ity law of 〈Xt 〉DN+1

− 〈Xt 〉DN
given {Xt }t∈DN

. Then, by construction of fN+1, if XN
t and

〈Xt 〉DN
follows the same distribution, the probability distributions of XN+1

t and 〈Xt 〉DN+1

also coincide on Ω , which finishes the inductive step. Incidentally, we have an interpreta-
tion for the statistical contribution of a component fn,k(t) · ξn,k . At each step N ,the function∑

k fN+1,k(t) · ξN+,k represents the uncertainty about Xt that is discarded by the knowledge
of its values on DN+1 \ DN .

It now remains to verify the basis statement to validate the recurrence argument, that is:

X0
t = f0,0(t) · ξ0,0 = 〈Xt 〉D0

.

Actually, the need to satisfy this prerequisite enforces how to set the expression of f0,0. The
conditional average 〈Xt 〉D0

is a function of the value of Xt on D0 = {0,1}. By construction
the value of Xt in 0 is assumed to be zero. We note XZ the random function X1 knowing
X0 = 0, and we recall that its statistics is given by relations (2) for a Wiener process and (3)
for an Ornstein-Uhlenbeck process respectively. With the notation of Sect. 4.2, we write
〈Xt 〉D0

as a function of XZ

〈Xt 〉D0
= Xμ0,1(t,0, XZ). (28)



412 T. Taillefumier and M.O. Magnasco

It defines a Gaussian random function 〈Xt 〉D0
of the form f0,0 · ξ0,0. The dependency of its

variance upon t yields the expression of the deterministic part f0,0

f0,0(t) =
√

〈〈Xt 〉2
D0

〉. (29)

When applied to the Wiener process, relation (28) reads

〈Wt 〉D0
= t · WZ

and relation (29) gives the right expression for Ψ0,0

Ψ0,0(t) =
√

〈WZ〉2 · t2 = √
Γ · t.

When applied to the Ornstein-Uhlenbeck process, relation (28) yields

〈Ut 〉D0
= sinh (αt)

sinhα
· UZ

and relation (29) gives the already mentioned expression of Φ0,0

Ψ0,0(t) =
√

〈UZ〉2 ·
(

sinh (αt)

sinhα

)2

=
√

Γ · e− α
2 | sinh (αt)|√

α · sinhα
.

6.2 Representation as a Bi-infinite Sum

Now, we further this recurrence description to show that X can be naturally represented
as a bi-infinite series of random functions. In that perspective, we extend the definition
of the dyadic sets to DN = {k2−N |k ∈ Z} and we have the increasing sequence of sets
D−N = 2N

Z ⊂ · · · ⊂ D0 = Z ⊂ · · · ⊂ DN = 2−N
Z. We can easily adapt the rationale of the

recurrence construction on S−M,0 = [0,2M ] to build a limit process by summation of the
random contributions of fn,k · ξn,k . In order to distinguish this situation from the previous
case, we designate MXN the partial sum at rank N ≥ −M when the building is initiated
at rank −M . The usual definitions are still valid to explicit the basis of functions fn,k for
n > −M but the index k now runs satisfying 0 ≤ k < 2M+n−1. As previously, the expression
of the basis element denoted f̄−M,0 satisfies on S−M,0

MX−M = f̄−M,0(t) · ξ−M,0 = 〈Xt 〉D−M
, (30)

where the first partial sum is denoted MX−M . We posit the general formulation for the partial
sums MXN on S−M,0 for N ≥ −M

MXN
t =

N∑
n=−M+1

∑
0≤k<2M+n−1

fn,k(t) · ξn,k + f̄−M,0(t) · ξ−M,0. (31)

We specify these results for our two cases of interest. In the case of a Wiener process, we
defined the functions Ψn,k

Ψn,k(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
Γ

2−n+1 · (t − 2k · 2−n) if (2k)2−n ≤ t < (2k + 1)2−n,√
Γ

2−n+1 · (2(k + 1)2−n − t) if (2k + 1)2−n ≤ t < 2(k + 1)2−n,

0 otherwise,
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for n > −M , and the first element Ψ̄−M,0

Ψ̄−M,0(t) =
√

Γ

2M
· t. (32)

In the case of an Ornstein-Uhlenbeck process, we similarly write the functions Φn,k

Φn,k(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
Γ ·sinh (|α|(t−2k·2−n))√

α·sinh (α2−n+1)
if (2k)2−n ≤ t < (2k + 1)2−n,

√
Γ ·sinh (|α|(2(k+1)2−n−t))√

α·sinh (α2−n+1)
if (2k + 1)2−n ≤ t < 2(k + 1)2−n,

0 otherwise,

for n > −M , and the first element Φ̄−M,0

Φ̄−M,0(t) =
√

Γ · e−α2M−1
sinh (|α|t)√

α · sinhα2M
. (33)

Expression (31) suggests that the process X admits a natural discrete representation as a
bi-infinite series on limM→∞ ∪MS−M,0 = R

+. To this end, we extend the definition of fn,k

on R
+ by setting its value to zero outside S−M,0 and we form the quantity

X̂N
t =

N∑
n=−N+1

∑
0≤k<2N+n−1

fn,k(t) · ξn,k.

We want to prove the normal convergence of the sample path t 
→ X̂N
t (ω) on every compact

A in R
+ and almost surely on Ω . Let us chose M so that A ⊂ S−M,0 = [0,2M ]. For n > 0,

we already know the following inequalities

sup
0≤k<2N+n−1

sup
0≤t≤2M

|Φn,k| ≤ √
Γ · 2− n+1

2 ,

sup
0≤k<2N+n−1

sup
0≤t≤2M

|Ψn,k| ≤ √
Γ · e|α|2− n+1

2

and we can show for n < 0 the new inequalities

sup
0≤k<2N+n−1

sup
0≤t≤2M

|Φn,k| ≤ √
Γ 2M · 2− |n|+1

2 ,

sup
0≤k<2N+n−1

sup
0≤t≤2M

|Ψn,k| ≤
√

Γ 2M−1

|α| · 2− |n|+1
2 .

The speed of convergence of the upper bounds when n goes to infinity by negative or pos-

itive values is in 2− |n|+1
2 , which justifies by the usual argument that t 
→ X̂N(ω) converges

normally and uniformly in t and almost surely on Ω . We have the normal convergence of
almost every sample path on any compact A and it causes the limit process limN→∞ X̂N to
have continuous paths on R

+. Moreover, as a sum of Gaussian variables, it is also a Gaussian
process. Therefore, proving that limN→∞ X̂N is a discrete representation of the process X

just requires us to show that for every t, s in R
+ its covariance satisfies

lim
N→∞

〈X̂N
t · X̂N

s 〉 = 〈X̂t · X̂s〉.
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6.3 Covariance Calculus

To verify the cogency of the bi-infinite decomposition, it is enough to demonstrate that the
covariance

〈X̂N
t · X̂N

s 〉 =
N∑

n=−N+1

∑
0≤k<2N+n−1

fn,k(t)fn,l(s)

= 〈NXN
t · NXN

s 〉 − f̄−N,0(t)f̄−N,0(s)

converges toward the expected covariance of the process X for every t , s in R
+. We chose

M satisfying 2M ≥ max(t, s) and we have t , s elements of S−M,0. We introduce for n ≥ −M

the indices kn and ln to designate the sequence of supports Sn,kn and Sn,ln , which contain t

and s respectively. We can write the reduced expression of the partial sums MXN
t defined

in (31)

MXN
t =

N∑
n=−M

fn,kn (t) · ξn,kn + f̄−M,0(t) · ξ−M,0.

We remark that, for P > M , the covariance of the partial sums P XN reads on S−M,0

〈P XN
t · P XN

s 〉 = 〈MXN
t · MXN

s 〉 + f̄−P,0(t)f̄−P,0(s)

− f̄−M,0(t)f̄−M,0(s) +
−M∑

n=−P+1

fn,kn (t)fn,ln (s). (34)

In the previous relation, we have extended the definition of the indices kn and ln for n ≥ −P

on S−P,0. If t and s are elements of S−M,0, it is easy to see that we necessarily have kn = 0
and ln = 0 for n < −M . We then realize that the bottom line of (34) cancels out since we
show in supplementary materials that

−M∑
n=−P+1

fn,kn (t)fn,ln (s) =
−M∑

n=−P+1

fn,0(t)fn,0(s)

= f̄−M,0(t)f̄−M,0(s) − f̄−P,0(t)f̄P,0(s).

We are in a position to identify the covariance of NXN and MXN for t, s in S−M,0 and N ≥ M

〈NXN
t · NXN

s 〉 = 〈MXN
t · MXN

s 〉.
We now need to study the convergence of the covariance of X̂N expressed on S−M,0 under
the new form

〈X̂N
t · X̂N

s 〉 = 〈MXN
t · MXN

s 〉 − f̄−N,0(t)f̄−N,0(s).

The exact same calculation as in Sects. 3.2 and 5.2 proves that we have

lim
N→∞

〈MXN
t · MXN

s 〉 = 〈Xt · Xs〉,

whether X designates a Wiener process or an Ornstein-Uhlenbeck process. Therefore, the
covariance of X̂N converges toward the expected expression for the covariance of the process
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X as soon as we have

lim
N→∞

f̄−N,0(t) f̄−N,0(s) = 0.

For the Wiener process the examination of expression (32) reveals that Ψ̄−N,0(t) tends to
zero for every t ≥ 0 when N goes to infinity. For the Ornstein-Uhlenbeck process, the ex-
amination of expression (33) shows that Φ̄−N,0(t) tends to zero for every t ≥ 0 when N

goes to infinity if and only if α ≥ 0. With the restriction that α should be positive, this val-
idates our claim to represent the Wiener process and the Ornstein-Uhlenbeck process as a
bi-infinite sum of random functions fn,k · ξn,k on R

+.
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